

Plague in the 21st Century

Positive Location Control A

Positive Location Control C

Negative Location Control D

Case Investigation A

Case Investigation B

Case Investigation C

Case Investigation D

Case Investigation G

Case Investigation H

Case Investigation I

Case Investigation E

-C0021867-142 -C0021868-143 -NM830651-885

-NM8306741-87 -NM830692 -NM012147

-- NM013239-539 -- NM024452 -- NM021852-138 -- NM021856-140

- NM024476-306

- NM024477-309 - NM024479-310 - NM024484-315 - AZ921367-360 - AZ921389

-AZ921377 -NM990061

-NM990030

-AZ962456 -CO92

- CO921715 } -NM830488-1284

NM830483

NM830694 NM830823

AZ962544-528

rvid M. Engelthaler

TGen North
lational Genomics Institute

The Pestilent Triumvirate

Yersinia pestis –
 Extremely virulent gramneg bacterium

Xenopsylla cheopis –
 Unexcelled plague vector

 Rattus – Widespread commensal rodent; highly susceptible to plague

Plague Natural History

Urban Vector/Host

Sylvatic Vector/Host

Transmission by Fleas

The Plague Dogma: Blocking in Fleas

- Bacot and Martin 1914
- Infected X. cheopis develop "jelly-like masses of a brown color" (plague colonies) in their midguts and proventriculi
- Occlusion of the proventriculus (block formation)
- Starving, blocked fleas repeatedly attempt to draw blood into the foregut – distends esophagus
- Y. pestis-infected blood flushes back into the feeding site

The Flea Gut

The Proventriculus

Blocking and Survival of Yersinia pestis in Fleas

Blocked Xenopsylla cheopis

Vector-Pathogen Dynamics

 Since the "Plague Dogma" was originated several studies have elucidated the relationship between fleas and pestis

What we know:

- Fleas need to be blocked to transmit
- Fleas become infectious ("blocked") after some period of time (extrinsic incubation period)
- Blocked fleas die relatively soon after blockage, from starvation/dehydration
- Different fleas have different vector efficiencies
- Y. pestis has specific virulence and transmission factors

Quantifying Pestis

- Hinnebusch et al. (1998-2002), using quantitative competitive PCR estimated that a bacterial load of 10⁶ cells was needed for fleas to become blocked (*X. cheopis*)
- Surmised that this could be used to estimate the infectiousness of fleas collected during epizootics
- Early testing of fleas could provide info on public health risk of epizootics

Some of My Research Questions

- Can QCPCR actually provide important information regarding infectiousness of fleas?
- Most experiments done with X. cheopis Is this really typical for transmission in wild rodent-flea cycles?
- How can we explain differences in vector competency?
- How important is transmission by partially blocked or unblocked fleas?
- How important are fleas as reservoirs of Y. pestis infection?

Bacterial Loads in *Xenopsylla* cheopis by Week Post-Infection

Bacterial Loads in *Oropsylla montana* by Week Post-Infection

Transmission Studies

	Visibly Blocked Only	Transmitted Only	Both	Total
X. cheopis (n=95)				
%	7	14	2	23
No. pestis/flea	10^6.7	10^7.1	10^7.1	
EIP* (range)	20 (16-23)	16 (6-32)	17 (15-18)	
<i>O. montana</i> (n=196)				
%	0	2	0	2
No. pestis/flea	-	10^6.2	-	
EIP	_	23 (4-37)	-	

^{*}EIP = Extrinsic Incubation Period – the number of days post-infection until transmission

Colonization Location in Fleas

- Blockage requires pestis colonization in proventriculus
- Can a large colony can grow in midgut and eventually occlude the proventriculus?
- Does pestis colonize in the same locations for both X. cheopis and O. montana?
- Is it possible to quantify bacterial loads in proventriculus vs. midgut?

The Flea Gut

Colonization Location in *X. cheopis* and *O. montana*

- Combined infection of the proventriculus and midgut is more common in *X. cheopis* than *O.* montana (81.3% vs. 16.7%)
- In no case was the proventriculus solely infected
- Both species can have heavy midgut loads (>10⁶ Y. pestis) without proventricular infection and then fail to transmit

Visualizing *Y. pestis* Infection in Flea Gut

- "Dark mass" does not equal plague colony
- Transform Y. pestis with the Green Fluorescent Protein Gene
- Produce Green Glowing plague
 - Y. pestis::pEGFP
 - Easily visualize colonies under UV light

Visualizing Y. pestis in the Flea

Flea midgut infected with Yersinia pestis transformed with Green Fluorescent Protein (GFP)

Xenopsylla cheopis midgut and proventriculus infected with Y. pestis

- Y. pestis
 simultaneously
 colonizes midgut and
 proventriculus
- Similar to the QC-PCR results
- Helps further explain why X. cheopis is such a effective vector

- Colonies typically seen in the midgut only
- Again, validating the QC-PCR findings
- And further provides evidence why O. montana are relatively inefficient vectors

Xenopsylla cheopis midgut and proventriculus infected with Yersinia pestis

Xenopsylla cheopis midgut and proventriculus infected with Yersinia pestis

QCPCR and GFP Results

- X. cheopis block and transmit more quickly
 - Exceptional vector can block within 5 days and transmit at high frequency
 - Y. pestis simultaneously colonizes midgut and proventriculus
- O. montana are not efficient "blockers", but can have a persistent midgut infection
 - Relatively inefficient vector, but may act as a reservoir
 - Mechanical transmission or transmission by partially blocked O. montana might be important

New Directions and Ideas

- Biofilms
- "Early Phase Transmission"

A Plague Biofilm?

- Recent studies* have identified a biofilm produced by pestis
 - The hms genes are homologous to genes in other biofilm-forming bacteria
 - Allows bacteria to form dense aggregates in the midgut, surrounded by an extracellular matrix
 - Aggregates can adhere to the cuticle-covered spines in the proventriculus
 - Produced only at 28C, in the flea midgut
 - Appears to contain lipid derived from the flea blood meal

^{*}Jarrett et al. 2004; Erickson et al. 2006; Forman et al 2006;

Biofilms and the Hms Gene Locus

hms- Y. pestis

hms+ Y. pestis

More Cool Pics

Uninfected *X. cheopis*

X. Cheopis infected w/ hms- Y. pestis

X. Cheopis infected w/ hms+ Y. pestis

Jarrett et al., 2004

Evolving Thoughts on The Plague Dogma

A Changing Paradigm

- Do fleas really need to be blocked to transmit?
 - One O. montana in my studies transmitted on day 4 p.i. – too early for a block to develop
- Was this mechanical transmission?
- Might the old plague transmission dogma be insufficient?

"Early Phase Transmission" by *Oropsylla montana*

- Early-phase transmission of Y.
 pestis occurred reliably 1-4 d
 after infection.
- Block formation was not required to observe efficient transmission.
- The "extrinsic incubation period" (1 d) was much shorted than reported previously (10-53 d).

 High transmission efficiency coupled with EPT should lead to rapid spread in a susceptible host population.

Other Research Avenues

- Antibiotic Resistance
 - Resistant strains found in Madagascar
 - Indiscriminate use of antibiotics will lead to more
- Climate and climate change
 - Recent modeling can help identify high risk years
 - Any changes will affect ecology of disease for better and worse
- More genomics, transcriptomics, and proteomics
- Ecological niche modeling
- Improved molecular epidemiology
 - PH and Biodefense
- Vaccine Development

Final Thoughts

- X. cheopis is an unrivaled vector
 - Likely due to biological factors in flea rather than in Y. pestis
- New world flea-pestis dynamics represent a different life cycle, allowing for both rapid epizootic and prolonged enzootic cycles
- Recent discoveries are changing the Plague Dogma
 - "Early Phase Transmission"
 - The role of Biofilms
- Fleas act as reservoir, vector and pathogenesis collaborator

Final, Final Thoughts

- Although *O. montana* is less efficient vector than *X. cheopis* by standard measures, it may be more efficient for natural epizootic and enzootic maintenance
- The flea/pathogen dynamic is just that dynamic
 - This vector/pathogen relationship is relatively new
 - And it looks like the beginning of a beautiful friendship

www.TGenNorth.org